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Eight manufacturing facilities participating in the National
Institutes of Health–sponsored Clinical Islet Transplanta-
tion (CIT) Consortium jointly developed and implemented
a harmonized process for the manufacture of allogeneic
purified human pancreatic islet (PHPI) product evaluated
in a phase 3 trial in subjects with type 1 diabetes. Manufac-
turing was controlled by a common master production

batch record, standard operating procedures that included
acceptance criteria for deceased donor organ pancreata
and critical raw materials, PHPI product specifications,
certificate of analysis, and test methods. The process was
compliant with Current Good Manufacturing Practices
and Current Good Tissue Practices. This report de-
scribes the manufacturing process for 75 PHPI clinical
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lots and summarizes the results, including lot release.
The results demonstrate the feasibility of implementing
a harmonized process at multiple facilities for the man-
ufacture of a complex cellular product. The quality
systems and regulatory and operational strategies de-
veloped by the CIT Consortium yielded product lots that
met the prespecified characteristics of safety, purity,
potency, and identity and were successfully transplanted
into 48 subjects. No adverse events attributable to the
product and no cases of primary nonfunction were
observed.

Previous clinical trials assessing treatments for unstable
type 1 diabetes have demonstrated restoration of pan-
creatic b-cell function by allogeneic islet transplantation
(1–4). In 2000, the University of Alberta reported that
transplantation of allogeneic purified islet products re-
sulted in sustained C-peptide levels, improved glycemic
control, and prevention of hypoglycemia in seven subjects
with type 1 diabetes (5). The results were later confirmed
by Brennan et al. (6) in a multicenter trial reporting the
12-year follow-up of seven subjects. One subject experi-
enced graft failure 10.9 years post–islet transplantation.
The remaining six continued to have sustained C-peptide
levels and improved glycemic control. No episodes of se-
vere hypoglycemia, opportunistic infections, or lympho-
mas were reported. Although significant progress has
been made since the initial trials, development pathways
for cellular therapy have required convergence toward
regulatory guidelines on clinical trial design. Manufactur-
ing differences at the various processing facilities prevented
comparison of clinical results across centers, making it
difficult to derive overall conclusions and limiting islet
transplantation use in medical practice. Factors affecting
the quality of islet products, including organ donor accep-
tance criteria (7,8), organ recovery techniques, cold ischemia
time (9–11), organ preservation and transport solutions
(12,13), and methods for islet isolation (14), purification,
and culture, have been previously reported (15–17).

Protocol CIT-07 was a prospective, multicenter, single-
arm, pivotal phase 3 trial conducted at eight academic
institutions in North America (Clinical trial reg. no.
NCT00434811, www.clinicaltrials.gov) (18). The trial eval-
uated the safety, tolerability, and efficacy of the purified
human pancreatic islet (PHPI) product in a defined
population of subjects with type 1 diabetes and supported
product licensure in the U.S. The trial was conducted under
a Division of Allergy, Immunology and Transplantation/
National Institute of Allergy and Infectious Diseases
(DAIT/NIAID)–sponsored U.S. Investigational New Drug
application and a Clinical Trial Application in Canada.
Manufacturing information was submitted to a DAIT/
NIAID-sponsored U.S. Drug Master File. A chemistry,
manufacturing, and controls monitoring committee (CMC
MC), with representatives from each manufacturing facility
and DAIT/NIAID, was responsible for the harmonization

of manufacturing processes, including in-process controls,
qualification of manufacturing facilities, definition of product
specifications, and quality oversight.

This article describes the manufacturing process and the
in-process and lot release test results for the 75 clinical lots
transplanted into 48 subjects enrolled in the trial. Each
product was manufactured and transplanted at the same
institution. We report the results of the first successful
standardization of manufacturing processes for the alloge-
neic PHPI product executed at multiple facilities for trans-
plantation to support a pivotal trial. The Clinical Islet
Transplantation (CIT) standard operating procedures
(SOPs) and the master production batch record (MPBR)
developed for product manufacturing are publically available
(19–40). The clinical outcomes are reported elsewhere (18).

RESEARCH DESIGN AND METHODS

Participation in the National Institutes of Health (NIH)-
sponsored CIT Consortium required a demonstrated record
of robust clinical and islet product manufacturing success
(Supplementary Data). The CMC MC developed the com-
mon MPBR (23), product specifications (32), and interim
and final certificates of analysis (COAs) (30,31) and
agreed on the deceased donor organ acceptance criteria
(Table 1). Each manufacturing facility was responsible for
its own quality control, quality assurance, and compliance
with Current Good Manufacturing Practices (cGMP) and
Current Good Tissue Practices. The CMC MC provided
further quality oversight by qualifying the manufactur-
ing facilities for study participation and conducting
batch record reviews. Assays used to determine product
viability (fluorescein diacetate/propidium iodide [FDA/PI])
(33,34,37), identity/quantity (dithizone [DTZ]) (35), and
biological potency (glucose stimulated insulin release
[GSIR] by ELISA) (41) were qualified at each facility be-
fore that facility’s participation in the trial. Manufac-
turers were required to meet the predefined assay
acceptance criteria for accuracy, precision, selectivity,
sensitivity, and reproducibility of each assay. All opera-
tions were conducted using aseptic processing in accredited
cGMP facilities (Supplementary Data).

Pancreas Processing
After arrival of the donor pancreas at the manufacturing
facility, acceptance criteria were verified (Table 1), and a
sample of the preservation solution was taken for sterility
testing. Excess pancreas tissue was removed, and the pan-
creas was weighed (initial weight). The pancreas was then
decontaminated by placing it in Hanks’ balanced salt so-
lution containing 1 g/L cefazolin or 10% povidone iodine
solution.

Perfusion and Distension
The pancreas was divided at the neck to separate the head
from the body and tail. A cannula was placed in the main
pancreatic duct of each section. On the basis of the initial
pancreas weight, the volume of the CIT Enzyme Solution
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(28,29,36) was determined. The pancreas was perfused
with one of three enzyme blend solutions containing a
collagenase and a protease (Table 2). Each enzyme lot
was qualified by three CIT manufacturers by assessing
enzyme activity before its introduction into product
manufacture (23). Each pancreas segment was distended
intraductally by perfusion with cold CIT Enzyme Solution
(28,29,36) either manually or by controlled perfusion
(42–44). Perfusion occurred for 4–10 min at 60–80 mmHg
followed by 4–6 min at 160–180 mmHg at 4–14°C. Final
trimmed pancreas weight was calculated by subtracting
the weight of tissue trimmed during perfusion from the
initial pancreas weight. The perfused pancreas was cut

into 5–15 pieces and placed in a Ricordi digestion cham-
ber (Biorep Technologies, Inc., Miami Lakes, FL).

Digestion Step
Tissue digestion began with recirculation of the Enzyme
Solution (phase 1) to dissociate the pancreas progressively
followed by a dilution phase (phase 2) in which the en-
zymes were neutralized by cooling and dilution with fresh
RPMI medium. For the recirculation phase, the circuit was
primed with CIT Enzyme Solution, and the temperature
was set at 32–38°C. The flow rate was set to 210–250
mL/min until the set temperature was reached and then
reduced to 90–130 mL/min. Freed islets were eluted in

Table 1—Pancreas donor qualifications

Requirement Yes No NA

A qualified donor must have yes responses to all the inclusion criteria (A), and no responses to all the
exclusion criteria (B and C).

Container label must specify human pancreas, and an UNOS or a DDD number must be present.

The organ procurement organization must be identified.

A. Inclusion criteria (The donor or pancreas must meet these criteria.)
1. Pancreas preservation in (i) UW, (ii) PFC/UW, (iii) HTK, or (iv) PFC/HTK solutions
2. Maximum 12-h cold ischemia time
3. Donor age 15–65 years
4. Cause and circumstances of death acceptable to the transplant team

B. Exclusion criteria (Is there evidence of the following conditions?)
1. History or biochemical evidence of type 1 or 2 diabetes (Transplant teams may consider donor

HbA1c .6.1% in the absence of transfusions in the week before death as an indication for exclusion,
with discretion for donors who have received transfusions.)

2. Pancreas from non—heart-beating cardiac death donors
3. Malignancies, other than resected basal squamous cell carcinoma or intracranial tumor as the cause of

death
4. Suspected or confirmed sepsis
5. Evidence of clinical or active viral hepatitis (A, B [HBcAg], C). HBsAb positive is acceptable if there is a

history of vaccination.
6. AIDS
7. HIV seropositivity (HIV-I or HIV-II) or HIV status unknown
8. HTLV-I or HTLV-II (optional)
9. Syphilis (RPR or VDRL positive)

10. Active viral encephalitis or encephalitis of unknown origin
11. TSE or Creutzfeldt-Jakob disease
12. Suspected rabies diagnosis
13. Treated or active tuberculosis
14. Individuals who have received pituitary human growth hormone
15. Any medical condition that, in the opinion of the transplant team, precludes a reasonable possibility of a

favorable outcome of the islet transplant procedure
16. Clinical history and/or laboratory testing suggestive of West Nile virus, vaccinia, or SARS

C. Exclusion criteria—behavioral profiles (Is there evidence of the following conditions?)
17. High-risk sexual behavior within 5 years before time of death: men who have had sex with men,

individuals who have engaged in prostitution, and individuals whose sexual partners have engaged in
high-risk sexual behavior

18. Nonmedical intravenous, intramuscular, or subcutaneous drug use within the past 5 years
19. Persons with hemophilia or related clotting disorders who have received human-derived clotting factor

concentrates
20. Findings on history or physical examination consistent with an increased risk of HIV exposure
21. Current inmates of correctional systems and individuals who have been incarcerated for

.72 consecutive hours during the previous 12 months

DDD, donor-derived disease; HBcAg, hepatitis B core antigen; HBsAb, hepatitis B surface antibody; HTK, histidine-tryptophan-
ketoglutarate; HTLV, human T-cell lymphoma; NA, not applicable; PFC, perfluorocarbon; RPR, rapid plasma reagin; SARS, severe
acute respiratory syndrome; TSE, transmissible spongiform encephalopathy; UNOS, United Network for Organ Sharing; UW, University
of Wisconsin; VDRL, venereal disease research laboratory.
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the diluting buffer and collected. Samples were taken
throughout digestion and assessed by DTZ staining (35)
to determine the time to switch from phase 1 to phase
2 (45). The decision to switch to dilution was based on the
number of islets, percent free islets, and percent frag-
mented islets (23).

During dilution (phase 2), the flow rate was increased
back to 210–250 mL/min, and the temperature was re-
duced to #30°C. If a large number of embedded islets was
observed in samples of the digested product, the temper-
ature was maintained between 30 and 38°C. Dilution was
complete when minimal tissue remained in the chamber
and no islets were observed in the DTZ-stained remaining
tissue. The eluate containing the islets was pooled, centri-
fuged, washed with cold CIT Wash Solution (27), and
resuspended in cold CIT Purification Solution (22).

Purification Step
Twenty-five milliliters or less of digested tissue were
layered over an iodixanol-based continuous density gra-
dient (20), ranging from 1.060 to 1.100 6 0.01 g/mL, and
were centrifuged at 1,800–2,000 rpm in a COBE 2991 cell
processor (Terumo BCT, Lakewood, CO) at 4–8°C. Twelve
25-mL gradient fractions were collected in 250 mL conical
tubes prefilled with 225 mL CMRL 1066, Supplemented,
CIT Modification Solution (Mediatech, Manassas, VA)
(38). Islet purity from each fraction was estimated by DTZ
staining. Purified fractions were classified as high ($70%),
middle (40–69%), and low (30–39%) purity, and those with
the same purity were pooled. If .50,000 islets were present
in fractions with purity ,30%, supplementary purification
was performed using Biocoll (Biochrome AG, Berlin, Germany)
(25), polysucrose discontinuous gradients (Mediatech)
(24), or OptiPrep (Nycomed/Takeda, Osaka, Japan) (26).
Purity of the fractions obtained by supplementary purifi-
cation was assessed by DTZ staining, and each fraction
was combined with fractions of equivalent purity to those
obtained by using the iodixanol-based gradient. From this
point forward, the high-, medium-, and low-purity frac-
tions were processed separately and combined only after
culture and immediately before filling the infusion bags.

Culture Step
Purified islets were cultured for 36–72 h in nontreated
T-175 vented flasks (SARSTEDT AG & Co., Nümbrecht,
Germany) at 10,000–30,000 islet equivalents (IEQ)/30 mL
CIT Culture Media (19). High-purity islet fractions were
cultured at 37°C/5% CO2 for the first 12–24 h and at
22°C/5% CO2 for the remaining time. The middle- and
low-purity fractions were cultured at 22°C/5% CO2 at all
times as previously reported (3,46,47). The media was
removed after the first 24 h and fresh media added.

The cultured islet tissue was collected, washed, pooled,
and resuspended in 50–250 mL CIT Transplant Media
(40) according to islet fraction purity range. The settled
tissue volume was estimated by aspirating each pellet
from the high-, middle-, or low-purity fractions with a
10-mL glass pipette and allowing the aspirate to sedi-
ment by gravity for 5 min. If the combined total settled
tissue volume was #7.5 mL, all purity fractions were
pooled into a single infusion bag. If the total settled
tissue volume was .7.5 and #15 mL, the tissue was
divided into two or three infusion bags, with a maximum
tissue volume of 7.5 mL/bag. The pooled tissue for each
infusion bag was allowed to sediment, washed, and
resuspended in 100 mL CIT Transplant Media (40). The
final product was maintained at room temperature and
transplanted within 6 h of bag fill. Samples for lot release
tests were obtained before filling the infusion bags with
the PHPI final product.

Lot Release
Tests assessed product safety, purity, identity, and po-
tency. Because sterility and biological potency results were
not available at the time of lot release, lots were released
for transplantation by using an interim COA (ICOA)
(Supplementary Data) (31). Safety assessments at the time
of release included microbial contamination by Gram
staining and endotoxin using the limulus amoebocyte lysate
Endosafe-PTS or -KTA2 (Charles River, Charleston, SC). The
final COA (30) was issued when the sterility and postculture
GSIR test results became available (Table 3). The sterility
test was performed compliant with section 610.12 of the

Table 2—Enzyme combinations used in the manufacture of PHPI product

Activity (units) and manufacturer N = 75 Mean (SD) Median Minimum–maximum

Collagenase NB 1 (Wünsch)

46

2,008 (439) 1,829 1,600–3,842
SERVA Electrophoresis, Heidelberg, Germany

Neutral Protease NB (DMC units) 244 (65) 229 200–581
SERVA Electrophoresis

Clzyme (Wünsch)

18

2,472 (542) 2,201 1,620–3,740
VitaCyte, Indianapolis, IN

Neutral Protease NB (DMC units) 199 (45) 183 147–270
SERVA Electrophoresis

Liberase Collagenase I/II MTF (Wünsch)

11

2,678 (302) 2,632 2,426–3,500
Roche Diagnostics, Basel, Switzerland

Liberase Thermolysin (neutral protease units) 99,552 (55,097) 71,577 51,075–187,275
Roche Diagnostics

DMC, dimethylcasein; MTF, mammalian tissue free.
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Code of Federal Regulations Title 21. A preemptive plan
that included the criteria for reporting product contamina-
tion, if a contaminated lot needed to be transplanted for
clinical reasons, was agreed on with the Food and Drug
Administration.

Purity of the PHPI product was defined, not histolog-
ically, but as total IEQ per milliliter of total settled tissue
volume. Viability was assessed by staining with FDA/PI
(Sigma-Aldrich, St. Louis, MO) and expressed as the per-
cent of viable cells (33,34,37) among 50 consecutive islets.
DTZ staining was used for identification of islets, quanti-
fication of IEQ, purity determination, and categorization
by size ranges (35). Biological potency was determined by
the GSIR by ELISA (41), which quantitates the concentra-
tion of insulin secreted in vitro by islets in response to
stimulation with low (2.8 mmol/L) and high (28 mmol/L)
glucose concentrations. The results are expressed as the
stimulation index.

Statistical Methods
Recovery is defined as the quantity of IEQ retrieved
during the manufacturing process and expressed as IEQ
per gram of trimmed pancreas. Process yield refers to the
proportion of IEQ recovered relative to the starting
IEQ. Continuous variables are displayed as number of

observations, mean 6 SD, or median (interquartile range
[IQR]). Categorical variables are displayed as number and
percent. Relationship of donor characteristics to IEQ re-
covery was analyzed by stepwise regression. Comparisons
of variables among enzyme solutions and manufacturing
centers were performed using F tests. Statistical signifi-
cance was defined at P , 0.05. SAS for Windows versions
9.3–9.4 software (SAS Institute, Cary, NC) was used for all
data management and statistical analyses.

RESULTS

A total of 324 pancreata were processed for use in all CIT
clinical protocols. The overall success rate in producing
PHPI lots that met product release criteria was 52.5%
(170 of 324 total CIT lots), which is consistent with
previously reported rates (48–50). Manufacture success
among the centers ranged from 24.5 to 89.5%. The
main factor associated with manufacturing failure was
insufficient number of islets to meet the minimum re-
quired product dose. Subjects in Protocol CIT-07 received
75 of the 170 successfully manufactured PHPI lots, and
the remainder of this report focuses on these 75 lots.
Table 4 shows a side-by-side comparison of the data for
each center and for all centers together and displays the

Table 3—Final COA

Test Method Requirement

Identity
Recipient identity Visual inspection Recipient study ID and recipient medical record number on

this COA and on each infusion bag label identical to that
in the production batch record, section 12.3

Islet identity DTZ stain and microscopic
examination Islets present in each product bag

Volumes in bags
Suspension volume Direct measurement 200 mL per product bag

#600 mL total in three product bags
Settled tissue volume Direct measurement after

5-min settling
#7.5 mL per product bag
#15.0 mL total in three product bags

Potency
GSIR (high-purity islets,

preculture sample) ELISA For information only, report stimulation index
GSIR (high-purity islets,

postculture sample) ELISA Stimulation index .1
Islet quantity DTZ stain and microscopic

examination
First infusion: $5.0 3 103 IEQ/kg recipient BW

(total IEQ/ infusion)
Subsequent infusions: $4.0 3 103 IEQ/kg

recipient BW (total IEQ/infusion)
Viability FDA/PI stain and microscopic

examination $70% in each product bag

Purity
Islet concentration DTZ stain and microscopic

examination $20,000 total IEQ/mL total settled tissue volume

Safety
Appearance Visual inspection Light yellow to amber liquid with visible aggregates

in each product bag
Endotoxins LAL #5.0 EU/kg of recipient BW (total EU/infusion)
Sterility 21 CFR 610.12 No growth in each product bag

CFR, Code of Federal Regulations; EU, endotoxin unit; LAL, limulus amoebocyte lysate.
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rate of successful PHPI preparations. Table 4 also pro-
vides the characteristics of the pancreas donors, interme-
diate and final IEQ recovery, and lot release results. The
intermediate product results included those for the post-
digestion, postpurification, and postculture manufacturing
steps. Values are expressed as median (IQR) as a measure
of variability.

Donor Characteristics
Tables 4 and 5 summarize the pancreas donor physical
characteristics, cause of death, preservation method, and
cold ischemia times. Final recovery of IEQ correlated with
donor sex and BMI (P = 0.0002 and 0.0082, respectively).
No other donor or pancreas characteristics were signifi-
cantly related to IEQ recovery after adjustment for donor
sex and BMI. Differences in donor BMI among centers led
to differences in weight of the trimmed pancreas and
total IEQ recovered per pancreas, but pairwise compari-
sons among centers of IEQ recovery per gram trimmed
pancreas revealed no significant differences after adjust-
ment for multiple comparisons.

Pancreas Perfusion
Lots were manufactured by using a collagenase and a protease
(Table 2). The mean CIT Enzyme Solution volume used dur-
ing perfusion was 403 6 52 mL (range 350–500 mL), and
the mean perfusion time was 11 6 2 min. There was no
significant difference among enzyme blends in the final
recovery of IEQ per gram of trimmed pancreas.

Digestion and Dilution Phases
The mean digestion time (recirculation, phase 1) was 14 6
3 min (range 8–23 min). The decision to switch to dilution
(phase 2) was based on visual examination of 1–2-mL

samples of digested tissue collected from the Ricordi cham-
ber. The following factors were considered: 1) total amount
of digested tissue in the sample, 2) estimated total number
of islets, 3) percent free islets, and 4) percent fragmented
islets. The mean duration of phase 2 was 34 6 9 min
(range 8–57 min). The median (IQR) packed tissue vol-
ume after phase 2 was 44 (16) mL, and contained 708,470
(382,000) IEQ, representing a step recovery of 6,813 (3,672)
IEQ/g trimmed pancreas (Table 4).

Islet Purification
Islet purification was performed by continuous density
gradient centrifugation with a COBE 2991 cell processor.
The maximum tissue volume purified in each COBE run
was 25 mL. All COBE operations were performed at
2–8°C. Of the 75 lots manufactured and transplanted,
52 (69.3%), 10 (13.3%), 9 (12%), and 4 (5.3%) required
two, three, one, and four COBE runs, respectively, for islet
purification from the digested tissue. Postpurification is-
let recovery (total IEQ) was 582,370 (267,931) IEQ,
representing 5,471 (2,709) IEQ/g trimmed pancreas. Be-
fore culture, fractions were combined based on relative
purity (high $70%, medium 40–69%, low #40%) as de-
termined by DTZ staining (35). The purification step me-
dian yield was 82% (22%) of the islets present in the
postdigestion intermediate product (Table 4).

Islet Culture
Purified islets were cultured for 36–72 h before transplan-
tation. For the first 12–24 h, high-purity islet fractions
were incubated at 37°C/5% CO2, and middle- and low-
purity islet fractions were incubated at 22°C/5% CO2 as
previously described (3,46,47). All fractions were cultured
at 22°C/5% CO2 for the remainder of the culture period.
Median total islet count postculture was 490,174 (226,835)
IEQ, representing a total islet recovery of 4,730 (2,156)
IEQ/g trimmed pancreas. Median islet yield for the culture
step was 86% (17%). Median total process yield, calcu-
lated from postdigestion to postculture, was 71% (22%)
(Table 4).

PHPI Product Characteristics and Lot Release
PHPI final product was released on the basis of the results
reported on the ICOA (Supplementary Data) (31). Each
PHPI product lot was defined as the purified pancreatic
islets isolated during a single purification run from a sin-
gle deceased donor pancreas and administered to a single
recipient. Twenty-two subjects received one dose of PHPI
by intraportal infusion, and 25 and 1 received two and
three doses, respectively. Additional details of doses for
first, second, and third infusions are included in the Sup-
plementary Data. The initial transplant required a dose
of $5,000 IEQ/kg recipient body weight (BW), and the
second and third required a dose of $4,000 IEQ/kg re-
cipient BW (Table 6). The median total PHPI dose per
subject was 11,972 IEQ/kg (range 5,227–25,553 IEQ/kg),
with 42 of 48 subjects achieving clinical success (18).

Table 5—Additional donor and pancreas characteristics

Category n (%)

Sex
Male 53 (70.7)
Female 22 (29.3)

Cause of death
Anoxia 4 (5.3)
Cerebrovascular accident 33 (44)
Head trauma 34 (45.3)
Other 4 (5.3)

Cardiac arrest
No 59 (78.7)
Yes 7 (9.3)
Unknown 9 (12)

Preservation method
UW 47 (62.7)
PFC/UW 8 (10.7)
HTK 14 (18.7)
PFC/HTK 3 (4)
Not specified 3 (4)

HTK, histidine-tryptophan-ketoglutarate; PFC, perfluorocarbon;
UW, University of Wisconsin.
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Each of the 75 PHPI lots was released for trans-
plantation in 1 (n = 54), 2 (n = 20), or 3 (n = 1) infusion
bags. The median settled tissue volume was 4.0 (3.8)
mL and contained 6,694 (2,800) IEQ/kg recipient BW at
a concentration of 134,813 (131,407) IEQ/mL settled
tissue. Median viability was 94% (6%) in the high-purity
sample, and the median GSIR stimulation index was 2.3
(1.6) (Table 4). For all 75 PHPI lots, Gram stain was
negative, and the endotoxin concentration was #5.0 en-
dotoxin units/kg recipient BW.

Sterility tests were performed in samples of the pres-
ervation solution and the final product (Supplementary
Data); 22 of 75 preservation solution samples were con-
taminated with skin saprophytes and 1 of 75 contained
Candida albicans. For the final product, the sterility tests
of 5 of 75 lots showed skin saprophytes, and 1 lot
contained C. albicans (for the same lot that reported the
presence of C. albicans in the preservation solution). Per
CIT Consortium and site-specific procedures, in all cases,
the site investigators were immediately notified. The sub-
ject who received the lot contaminated with C. albicans
received fluconazole prophylactically. None of the recipi-
ents of these six lots exhibited signs or symptoms of in-
fection posttransplantation. No adverse effects attributable
to the investigational product were reported for any recip-
ient. All lots met the interim lot release criteria. After
transplantation, positive sterility test results were reported
for six product lots, and two lots failed the GSIR specifica-
tion. All other lots met the final release criteria.

DISCUSSION

The methods for large-scale isolation and purification of
adult human pancreatic islets have substantially improved
over the past three decades as a result of major collab-
orative efforts among several centers in North America
and Europe (1,51–53). Advancements in islet processing
technology, immunosuppression, immunomodulation, and
peritransplant anti-inflammatory strategies have contributed

to progressive improvement of clinical results. However, the
lack of standardization of islet processing methods may
have contributed to the variability of outcomes across
centers and reduced the ability to compare results, even
when the same clinical protocol and immunosuppressive
regimen were used.

Previously reported differences in outcome among
centers highlighted the challenges of the manufacturing
process for pancreatic islets in addition to those related to
immunosuppression management in islet allotransplanta-
tion (4,16). The Edmonton trial conducted at nine centers
resulted in a variable success rate (0–100%) for the pri-
mary end point, with all cases of primary nonfunction
occurring at two of the three centers at which no subject
achieved the primary end point (4). Islet products were
transplanted immediately after processing, which may not
have allowed time to evaluate the quality of the product.
Given previous experience, to minimize the risk of pri-
mary nonfunction, purified islets were cultured to permit
quality control before product release for transplantation
(45,46).

Quality of the islet products was affected by donor
characteristics, organ recovery and preservation, islet iso-
lation, purification, and culture methods (7,10,14–17). The
CIT investigators recognized the need for a major effort in
standardization of the PHPI manufacturing process to allow
for meaningful comparison of clinical trial outcomes across
sites. The investigators also recognized the need to define
stringent donor selection criteria and to define and de-
velop process improvements based on acquired experi-
ence that would consistently yield a high-quality islet
product (53).

We report the methods and results of a common man-
ufacturing protocol, representing the convergence of
several years of teamwork by eight academic institutions
to optimize and standardize processes, criteria, and test
methods across islet transplantation centers. A major
standardization effort was undertaken to ensure product
and process consistency and to test method reproducibil-
ity across participating manufacturers. The CIT collabo-
rative effort resulted in the implementation of a defined
set of critical process parameters and in-process controls
for PHPI production reflected in the common MPBR and
SOPs executed at the eight CIT processing facilities.

Among the key raw materials, we identified the donor
pancreas and the enzyme blends as critical components
of the PHPI manufacturing process. In 2007, the most
widely used enzyme for manufacture of islet products
became unavailable. This unforeseen limitation forced
our group to reevaluate, test, and qualify additional
proteolytic replacement enzymes. The CIT efforts re-
sulted in the successful identification and testing of
new enzyme blends by the manufacturing centers. The
results presented here show that the enzymes used in
digestion yielded lots that met the product specifica-
tion and, therefore, could be used in manufacturing the
PHPI product.

Table 6—Final product formulation for PHPIs

Ingredient Quantity

Active ingredient
Human pancreatic islets First infusion: $5.0 3 103

IEQ /kg recipient BW
(total IEQ/infusion)

Subsequent infusion:
$4.0 3 103 IEQ /kg
recipient BW (total IEQ/
infusion)

Inactive ingredients
CMRL 1066 transplant

media (n = 12) containing
HEPES without sodium
bicarbonate q.s. to 200 mL per bag

Albumin human, USP 2.5%

q.s., sufficient quantity; USP, U.S. Pharmacopeia.
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During the trial, potency was assessed by viability and
identity of islets as determined by FDA/PI (33,34,37) and
DTZ stain (35), respectively. The CMC MC developed
and standardized a GSIR by ELISA (41) for quality control
and as an in vitro assay for potency assessment of PHPI
products. The GSIR assay provided a quantitative measure
of the biological activity by determining the amount of in-
sulin released in response to glucose stimulation (Table 4).

During the conduct of Protocol CIT-07, all lots were
released on the basis of an ICOA and met lot release
specifications (Supplementary Data). As previously stated,
the GSIR results of the final product were not available
before transplantation. Additional studies may determine
whether the GSIR should become a component of the
matrix of functional assays for lot release.

The clinical trial results show that the PHPI product
was well-tolerated, safe, and effective in the specific type 1
diabetes population (18). These results were obtained de-
spite a range of donor characteristics (BMI 33.4 [8.2]
kg/m2, donor ages 42 [19] years, cold ischemia times 7.7
[3.4] h) and median PHPI dose (11,972 [range 5,227–
25,553] IEQ/kg).

This report is the first of the successful standardiza-
tion of the manufacture of a defined complex biological
cellular product for the treatment of type 1 diabetes with
hypoglycemia across multiple manufacturing facilities for
a license-enabling trial. The cGMP manufacturing process
defined in the common CIT documents yielded product
lots that met the prespecified criteria for safety, purity,
potency, and identity. These results show that the CIT
manufacturers achieved consistent and reproducible re-
sults across participating centers. No case of primary
nonfunction was observed after transplantation of PHPI
lots (18). The manufacturing and clinical data generated
in this study will be available to CIT and non-CIT sites to
facilitate licensure by the Food and Drug Administration.
Product licensure will be important to improve patient
access (with third-party coverage) to PHPI transplantation
and to facilitate the development of second-generation islet
products (e.g., stem cells, xenogeneic, encapsulated).
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